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Photon statistics from a resonantly driven quantum dot
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Photon correlations in the emission of a resonantly driven quantum dot are investigated, accounting for the
influence of the solid-state phonon environment. An analytical expression is derived for the second-order
fluorescence intensity correlation function, from which regimes of correlated and uncorrelated photon emis-
sions are predicted as the driving field is varied. Experiments to investigate this effect would provide valuable
insight into quantum dot carrier-phonon dynamics and are feasible with current technology.
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There has been a great deal of progress over the past few
years in refining fabrication and characterization techniques
for samples of small semiconductor quantum dots (QDs).!2
This has led to the ability to control and manipulate, with
ever increasing precision, the quantum states of charge car-
riers confined within single QDs?® and QD arrays.* Such sys-
tems are prototype solid-state quantum processors, ideal for
performing studies of coherent control techniques, decoher-
ence, and quantum measurements that will be key in assess-
ing the prospects for larger scale solid-state quantum infor-
mation processing (QIP). QDs are also promising candidates
for efficient single-photon sources,> opening up potential
applications in other paradigms such as linear optical® and
hybrid light-matter QIP.

There is therefore considerable interest in employing QDs
both as qubits themselves and as elements in a larger optical
setup. For either application an understanding of the coher-
ence properties of their optical transitions is key: in the
former case to ensure high fidelity qubit operations and in
the latter case to evaluate the degree of photon indistinguish-
ability in the QD emission. Hence, an experiment that estab-
lishes both the nonclassical nature of the QD fluorescence,
while at the same time exploring the potential for coherent
control of the QD excitonic states themselves, is desirable. In
fact, a first experiment exactly along these lines has recently
been reported by Muller et al.,® who measured the second-
order fluorescence intensity correlation function, g (7), for
a coherently driven InGaAs QD, observing damped oscilla-
tions in the signal.

Here, I shall show that not only does such a measurement
provide a clear signature of a solid-state two-level quantum
emitter, but that it is also a sensitive probe of the coherence
properties of the QD excitonic ground state. In contrast to the
excitonic occupation dynamics usually investigated,”'? in
the following I shall derive an analytical expression for the
fluorescence intensity correlation function of a driven QD. I
shall use it to show how the interplay between laser-induced
coherent exciton evolution, spontaneous photon emission,
and dephasing due to exciton-phonon interactions'> mani-
fests itself in the emitted photon statistics. In particular, it is
expected that the phonon-induced dephasing rate should dis-
play a nonmonotonic driving strength dependence.’~!> This
can be understood from a general resonance argument;>'? the
induced damping is dominated by phonons that are most
strongly coupled to the QD carriers, which corresponds to
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those that have wavelengths comparable to the QD size d (or
frequencies ~u/d, where u is the sound Velocitylo). These
modes are most effectively driven when the carrier dynamics
is resonant with them, which in turn implies that the Rabi
frequency (QD-driving coupling strength) is resonant with
them too. Hence, as the Rabi frequency is increased toward a
value of u/d the carrier-phonon coupling increases as well,
leading to a larger dephasing rate, only for it to decrease
again as the Rabi frequency is increased further, moving the
carrier dynamics out of resonance with the dominant phonon
modes. I shall demonstrate below that these dephasing-rate
variations give rise to a distinctive feature in the second-
order correlation function, namely, the appearance, disap-
pearance, and subsequent reappearance of long-lived oscilla-
tions in g®(7) as the driving field is changed.

We consider a single QD modeled by a two-level system
with ground state |0) (the semiconductor ground state) and
excited state |X) (a single exciton), separated by an energy
o, (i=1). The dot is addressed by an external classical laser
field of frequency w; and dot-laser coupling given in the
dipole approximation by ), with ) <. Both the phonon
environment and the radiation field are modeled by
harmonic-oscillator baths of frequencies wq and 6, respec-
tively, with q and k the corresponding wave vectors. The
carrier-phonon interaction acts only on the dot excited
state |X) and is taken to be of the usual spin-boson
form.?!1:14-16 Within a frame rotating at frequency w; this
leads to the Hamiltonian'” H=v|X)(X|+2(|0)X]|+|X)0|)
+Eq0)qbzlbq+ |X><X|Eq (gqb;;'i'g:;bq) + Ekﬁkakak+ Ek (ka'_a;r(
+fk0.ay), with rotating-wave approximations on both the
driving and system-photon coupling terms. Here, v=wy—w;,
is the detuning of the laser from the dot transition, o_
=|0XX]|, o,=|X)0[, g4 (fi) defines the exciton-phonon
(exciton-photon) coupling, by (ai) are the phonon (photon)
annihilation operators, and an irrelevant term has been
dropped.

On taking a trace over the phonon modes, which are as-
sumed to be in thermal equilibrium, the resulting spectral
density J(w)=2[g,4|*0(w-w,) completely describes the in-
teraction between the QD and phonons.'* For arsenide QDs,
the coupling of the confined exciton to acoustic phonons by
means of the deformation potential tends to dominate the
dephasing dynamics over the piezoelectric interaction or
coupling to optical phonons.'3!>16 In this case, the coupling
constant is given by g,=¢D(q)/ 2wy V,'®!? where \ is the
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sample density and V is the unit-cell volume. The form factor
is D(q)=[dr(Dy|(r)P=D, |, (0))e 0™, with 4, and 4,
being the confined hole and electron ground states, respec-
tively, while D, and D, are the corresponding bulk
deformation-potential constants. For clarity, I take a spheri-
cally symmetric hargonic confinement potential for the QD,
giving ¢, =(d,u\ ™ exp(-r2/2d> ), where d,, is the
electron (hole) ground-state localization length. For d,=d,
=d we obtain J(w):w3(Dh—De)2e‘(“’2d2/2”2)/(471'2)\145)
=aw’e™ (@ “’6)2, where a linear dispersion wy=ug has been
assumed. The spectral density is therefore super-ohmic with
a natural high-frequency cutoff at o~ w,=\2u/d due to the
finite QD size.

Under resonant continuous-wave excitation the system
reaches a quasisteady state (ss),® after which time the nor-
malized second-order fluorescence intensity correlation func-
tion of the QD, g (7 =U()I(t+7))/{I(1))?, may be written
2520

£2(7) =(o,0) (1 +(0(1) o)=loy0) - (1)

This is proportional to the probability of detecting two emit-
ted photons separated by a time 7 and normalized by the
form for independent detection. Here, and in the following,
o; (for i=x,y,z) are the usual Pauli matrices in the basis
{|0),]X)}. Note that the evolution of () must be obtained
conditional on the system being prepared in its ground state
at t=0 (p(0)=|0)0|), i.e., detection of the first photon initial-
izes the system state. The continuous-wave excitation condi-
tion ensures that there is no effect of any laser-pulse tempo-
ral profile in subsequent measurements.

During their evolution the QD states are coupled both to a
bath of phonons and the radiation field. Utilizing the time-
convolutionless projection operator technique?’ a master
equation for the reduced system density operator may be
derived from the Hamiltonian and the Liouville-von Neu-
mann equation, here within the Born approximation, and up
to second order in [g,| and |f,|. Typically, the memory time
within the radiation field is extremely short, 7,,~ (1/w,)
~1 fs for w, of around 1 eV.?? Since () < w,, we are then
justified in treating spontaneous emission within the Markov
approximation as being governed by a constant rate y.2%-22
The master equation thus has the following form:

p=—i(Hegtp — pHlg) = 1{D ()] 0, [0, p]]
- gl(t)o-xpa-z - f{(t) 0.p0y — §2(t)0-yp0-z
- S(t)a-zpo-y} + yo_po,, (2)

where  Hor={(Q2/2) +[&(0)/14T0,~[£(1)/410,~ [ (1) 2]o.
—(iy/2)o,o_ is non-Hermitian. Defining the bath correlation
function C(7)=[jdwJ(w)[cos(wr)coth(Bw/2)—i sin(wt)], the
following time-dependent rates are obtained:

D(t) = éj dt' Re[C(t)][vV* + Q% cos(Et")],  (3a)
0

& ()= Q—;J dt'C(¢+")[1 - cos(Et")], (3b)
E 0
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FIG. 1. (Color online) D (red, solid line) and Re(&,) (yellow,
dashed line) as a function of driving strength (). Parameters:
D,=-14.6 eV, D,=-4.8 eV, d=4.5 nm, u=5110 ms™!,
N=5370 kg m~3, and T=50 K, giving @=0.032 ps’.

&(n) = 9ftalt’C(t’)sin(Et’), (3¢)
EJg

where E?=12+02. The environment-shifted detuning enter-
ing His v'(t)=v+ [(dt’ Im[C(t')] and B=1/kgT, where kg
is Boltzmann’s constant and T is the temperature. The effect
of the phonon bath is therefore to induce frequency shifts, in
V(1) and through the real parts of & (¢) (arising from
vacuum and thermal fluctuations), as well as irreversible
terms through the dephasing D(r) and the imaginary parts of
£1(2)(1) (damping terms not present for 0=0).2

As written above, Eq. (2) is non-Markovian in the phonon
terms, but local in time. Of primary interest here is the long-
time behavior of the second-order correlation function, mea-
sured under continuous excitation conditions. In this case,
transients in the dynamics are ignored and the upper limits of
integration in Egs. (3a)—(3c) taken to infinity (a Markov
approximation®!). The rates then become time independent,
the key point being that they are still functions of the laser
detuning v and dot-laser coupling ). In fact, only D(%)=D
and Re[&()]=Re(¢&,) will enter the final expression for
g?(7), here given by D=(7Q?/2E*)J(E)coth(BE/2)
= (amO2E/2)eEl 0o coth(BE/2), and for elevated
temperatures  (kzT>w,.), Re(&)="; Q1 [mEeE! “'6)2(12
+E?B)erfi(E/ 0,)— 0 [24+(2E*+ 0} B ﬁ where erfi(z) is
the imaginary error function. In addition, an expression for
the bath-shifted detuning is needed, v'=v—[jdwJ(w)/ w=v
—ay 7Tw?, /4.

Both D and Re(&,) are plotted against () in Fig. 1 for the
resonance condition v’ =0, i.e., v= a\e"wwi/4. In particular,
the dephasing rate D grows quickly as the driving strength is
increased from zero (Do Q? at small Q) until the cutoff be-
gins to dominate. Consequently, any excitonic oscillations
induced by the coherent excitation become strongly damped
as the driving frequency approaches the cutoff, as anticipated
by the earlier resonance arguments. For example, when ()
=w.~1 meV, we have 1/Q=1.5 ps~!, compared to D
=0.6 ps~'. This damping weakens, however, and eventually
becomes negligible, as () increases further beyond w,.

The resulting dynamics is clearly illustrated from the ma-
trix form of Eq. (2), (s)=M(s)—K, in terms of the Bloch
vector s=(o_,0,,0.), with
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FIG. 2. (Color online) Top: g® against scaled delay time 7/A
for Q=2 weV (red, dotted line), Q=75 ueV (yellow, solid line),
0=0.4 meV (blue, dashed line), and (1=2.5 meV (purple, dash-
dot line). Bottom: Height of the first (blue, solid line), second (yel-
low, dashed line), and third (red, dotted line) peaks above as a
function of (). Inset: Height of corresponding peaks for a constant
pure dephasing rate of (1/150) ps~'. y=1/250 ps~!, all other pa-
rameters as in Fig. 1.

—(D+7v/2) 0 i) —Re())
M= 0 —(D+92) -iQ —Re(§)
iQ/2 - Q2 —y

and k=[i Im(&)+Im(&),Im(&,)—i Im(&,),—y]". Here, Q'
=Q+Re(&) and v =0. The dynamic evolution of (o.(7))
may now be found simply by solving for (s), while setting
($)=0 gives the required steady-state solution for (o, o_).
From Eq. (1) we then find an analytical expression for the
normalized second-order correlation function

gPM=1- e‘(2D+37)T/4<cos AT+ Msin AT),
4A

describing the detection statistics of photons emitted from
the resonantly driven dephasing QD, with A
=VOQ[Q+Re(&)]-(2D-7)?/16 now the effective oscillation
frequency. The correlation function is always zero at 7=0,
displaying the expected antibunching dip of a nonclassical
emitter.”’ As 7 increases beyond the characteristic dephasing
time [i.e., beyond min(1/D,1/7)], g?(7)—1 indicating in-
dependent photon detection due to dephasing of the optical
transition. At intermediate times, the correlation function de-
scribes an exponentially damped oscillation provided that A
is real. For a typical QD this is usually the case beyond weak
driving fields, here satisfied when 1>1 ueV for the param-
eters of Fig. 1. Most importantly, damping of the induced
oscillations is governed not only by 7 but also by the rate D,
which is itself a function of the driving strength (), leading to
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driving-dependent variations in the quality of oscillations as
Q) is varied.

This behavior is illustrated in Fig. 2(a) where the correla-
tion function is plotted as a function of delay time scaled by
1/A to allow for easier comparison. We see that at the small-
est driving frequency (2=2 wueV) no oscillations are yet
visible and the function exhibits only the antibunching dip.
As the driving strength is increased oscillations in g?(7)
appear as a result of the induced coherent exciton evolution
within the QD, shown here for =75 ueV. These oscilla-
tions are damped due to dephasing of the excitonic state by
phonons and as a result of spontaneous emission, though at
least three periods are clearly observable. However, as the
driving strength is further increased the quality of oscilla-
tions declines, as seen for 1=0.4 meV. This is in marked
contrast to the expectation for a constant phenomenological
pure dephasing rate I'5,%202% where the quality should simply
increase with ) due to a gain in Rabi frequency relative to
the dephasing rate. As stated above, the origin of this effect
is in the driving dependence of the dephasing rate D, itself a
result of the form of the exciton-phonon interaction and its
frequency dependence as seen in J(w). For 0=0.4 meV, D
has grown sufficiently in comparison to €} that the oscilla-
tions are now strongly damped. Only when () is increased to
higher values, beyond the cutoff, does the damping weaken;
in the case of 1=2.5 meV, D is now small enough that the
dephasing rate is dominated by +. This point is emphasized
in Fig. 2(b) where the heights of the three peaks in Fig. 2(a)
are plotted as a function of (). After an initial increase a dip
is observed in the height of all peaks and almost complete
suppression in the case of the third. The width of this dip
corresponds approximately to the width of the peak in D (see
Fig. 1). Of course, as () increases further, the peak heights
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FIG. 3. (Color online) Top: g? against delay time 7 for Q
=75 peV (yellow, solid line) and 2=0.4 meV (blue, dashed line).
Inset: As main but for constant pure dephasing rate of
(1/150) ps~!. Bottom: Oscillations in g® as a function of € at
fixed delay 7=20 ps, akin to the Rabi rotation behavior in Ref. 10.
All other parameters are as in Fig. 1.
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rise once more reaching their maximum value around ()
=3 meV. Again, this is contrary to the behavior expected for
a constant pure dephasing rate, shown in the inset for I';
=(1/150) ps~!, which exhibits no dip whatsoever.

We can see then that for a significant range of the param-
eters considered, oscillations in g?(7) completely disappear
after the first few picoseconds, resulting in independent pho-
todetection events after this time delay. This effect is shown
in Fig. 3(a) where, for 1=0.4 meV, independent detection
events are expected at delays beyond 7~40 ps, while oscil-
lations persist over a much longer timescale for weaker driv-
ing of =75 wueV. As before, this can be contrasted to the
case of a constant dephasing rate, illustrated in the inset. For
both field strengths oscillations persist well beyond 100 ps,
decaying at the same rate. Finally, in Fig. 3(b) we see that by
fixing the time delay, here at 20 ps though the actual value is
not crucial, the appearance, disappearance, and subsequent
reappearance of oscillations in the correlation function can
be observed as () is increased. This corresponds to a cross-
over from correlated to uncorrelated photodetection and back
again: a striking effect with its origin solely in the driving
dependence of the dephasing rate. Besides being of funda-
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mental interest, this signature provides a means to map out
the effective dephasing rate of the QD system, thus allowing
for the determination of optimum performance conditions for
the dot operating either as a qubit or single-photon source.

To summarize, direct measurements of the second-order
fluorescence intensity correlation function of a coherently
driven QD can be extremely sensitive to the internal dot
coherence properties, going beyond what would be expected
from more simplified models. I have shown that natural
variations in the phonon-induced dephasing rate result in re-
gimes of correlated and uncorrelated photon emissions, de-
pendent upon the driving field strength. This response should
be observable in QDs by exploiting recently developed semi-
conductor and laser technology'?® and could also be rel-
evant to other solid-state systems.’*
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